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S U M M A R Y  
The subject of this paper is the problem of diffraction of a time-harmonic axially symmetric acoustic wave by two 
concentric coaxial soft spherical caps. An integral equation technique is employed to solve such a boundary value 
problem involving two concentric coaxial spherical caps. Approximate expressions are derived for the far field ampli- 
tude as well as the scattering cross section for this problem when the incident wave is a low frequency axially symmetric 
plane wave travelling along the common axis of the two caps. By taking appropriate limits, the formulae for scattering 
cross section for the corresponding problems for a soft spherical cap, a soft sphere and a soft sphere bounded by a 
concentric soft spherical cap are also derived. Furthermore, the total electrostatic charge required to raise the two 
concentric coaxial spherical caps to unit potentials in a free space is readily evaluated from the analysis of this paper. 

1. Introduction 

Recently some research workers have discussed the problems of acoustic diffraction by a soft 
or a rigid spherical cap [1, 2, 3]. Jain and Kanwal [4, 5] have also solved the problems of 
acoustic diffraction by a soft or a rigid annular spherical cap. Although Collins [6] and Vaid 
and Jain [-7] have presented the solutions of the problems of acoustic diffraction by two 
coaxial soft and rigid circular disks, yet no attempt has been made so far to solve the problems 
of acoustic diffraction by two concentric coaxial soft or rigid spherical caps. We discuss here 
the solution of the problem of diffraction of a time-harmonic axially symmetric acoustic wave 
by two concentric coaxial soft spherical caps. 

The method of solution rests on formulating the problem in terms of two simultaneous 
Fredholm integral equations of the first kind which embody the steady state wave equation as 
well as the boundary conditions. An integral equation technique 1-8] is employed to reduce the 
two governing simultaneous Fredholm integral equations of the first kind to four Volterra 
integral equations of the first kind and two simultaneous Fredholm integral equations of the 
second kind. The four Volterra integral equations have a simple kernel and therefore can be 
easily inverted, while the two simultaneous Fredholm integral equations of the second kind 
can be readily solved by the standard iterative procedure when the frequency of the incident 
wave is low and the radius of the inner cap is small as compared to that of the outer cap. The 
formula for the far field amplitude is also derived. 

The formulation as well as the solution is given for an axially symmetric acoustic wave. A 
detailed discussion is then presented for the special case when the incident wave is an axially 
symmetric plane wave travelling along the common axis of the two caps. Approximate expres- 
sions for the far field amplitude as well as the scattering cross section are derived for this par- 
ticular case. By taking some appropriate limits, we readily obtain the formulae for scattering 
cross section of a soft spherical cap as well as a soft sphere and these formulae agree with the 
known results [1-4]. But the formula for scattering cross section for a soft sphere bounded by 
a concentric soft spherical cap obtained by taking an appropriate limit seems to be new. 
Finally, the analysis of this paper is used to evaluate the total electrostatic charge required to 
raise the two coaxial concentric caps to unit potentials in a free space. 

2. Formulation of the problem 

We take the common centre and the common axis of the two concentric coaxial soft spherical 
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caps of semi-angles ca, c~ z as the origin and polar axis for spherical polar coordinates (r, 0, ~o) 
so that the two caps are defined by r=a~, 0<_ 0<_ oq, all r and r=a2, 0 <  0<  ~2, all q), where 
a j, (j = 1, 2) are the radii of the two caps. It is assumed that an axially symmetric acoustic wave 
whose velocity potential is u o (r, 0)e -~'t impinges on the caps. The total velocity potential is 
of the form {uo(r, O)+O(r, 0)} e-~% Both Uo and q5 satisfy the Helmholtz equation 

(V2 +kZ)u(r, O) = O, k 2 = o)2/c z, (1) 

where c is the speed of wave propagation. We have to solve the following boundary value 
problem : 

(V2 +k2)r  0) = 0 ,  (2) 

qS(al, 0) = -uo(al, 0), 0 <- 0 <- cq, (3) 

4)(a2, 0) = -Uo (a2, 0), 0 -< 0 -< c~2, (4) 

q~, ~?(o/Or are continuous across the regions r=al, el < 0<  re, all q) and 

r = a 2 ,  e 2 < 0 < r c ,  all q~. (5) 

In addition, q5 (r, 0) satisfies the Sommerfeld radiation condition�9 
The integral representation formula for ~b which embodies the steady state wave equation (2) 

and continuity requirements (5) is 

qS(r, 0) = a 2 ( ~ f  2~ [eikR7 
- 4 . ) o  o gl(t) [_X-4,=o,  

where 
~ [0~b (rl, t!] 

gl"2(t)=sint (L Or1 ~,=,~+,,~+ 

a2(~2 2~ [-eikR7 
d~~ -- ~ Jo fO g2(t) Le-Jrl=a2 dgOldt' (6) 

Or~ ~ = a , - . , ~ -  ' (7) 

R is the distance between the source point (rl, t, r and the field point (r, 0, ~o), that is, 
R=(rZ+rZ-2rrl  cos ~)+ and cos O=cos  0 cos t+s in  0 sin t cos(~o-~ol). 

When we use the boundary conditions (3) and (4)in (6), we obtain two simultaneous Fredholm 
integral equations of the first kind for evaluating the unknown density functions g j, (j = 1, 2) 

K11(t,O)gl(t)dt + G12(t,O)gz(t)dt=uo(al, 0)=fl(O), O<_O<_cQ, (8) 
�9 0 

f7 G21 (t, O)gl(t)dt + K22(t, O)g2(t)dt = uo(a2, 0)=f2(0) ,  0-< 0 < c~2, (9) 
0 

where 

4 )@.] Kji(t, 0) = ~ 3o &P' '  ( / =  1, 2), (10) 
t.  l = a  I ,  r = t l  i 

i 6 ~ ( t , O )  = ~ .Jo I_R-J, .  _ . . . .  . . - , ,  d q ) l '  ( j # l ; j ,  l =  1,2). (11) 

The two governing simultaneous Fredholm integral equations of the first kind for this problem 
(8) and (9) are similar to equations (2.1) for n =2  in [8]. So in order to apply the integral equation 
technique [8], we use in (10)and (11) the well known formulae [9, 10] 

eikR 
-- ik (2n+ 1)j,(kr()hn(kr))P,,(cos 0) 

R n = O  

f2~z /On( cOS O)dq)l = 2~Pn (c~ O) Pn(COS t), 
0 

P, (cos 0) = =~- (2)~ f o~ cos{(n+�89 

(12) 

(13) 

(14) 
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- c o s { ( n + � 8 9 1 8 9  = ~ ( w - v ) ,  0 < ~ ,  w < ~ ,  (15) 
~ n = O  

where 

r(  = min(r,  r~), r)  = max(r, rl)  , 

j.(x) = (n/Zx) J. +~ (x), h, (x) = (n/2x) 4 n ~  ~(x), 

J, H (*), P and 6 are the Bessel function, the Hankel function of the first kind, the Legendre 
polynomial and the Dirac delta function respectively. There results after some simplifications 

Kz(t,  O) = Kj(t, O)+Gz(t, 0), (j = 1, 2), (16) 

g 1 fmin(0,t) dw 
Kj(t, O) ~aj  .=o ~ P. (cos 0)P. (cos t) =--2n a tJo  (cos w - c o s  0)-~ (cos w - c o s  t) } 

( j = l ,  2), (17) 

l f ~  ' Ltt(v,w)dvdw 
Gjz(t,O) = ~ a ,  o o ( c o s w - c o s @ ( c o s v - c o s t ) * '  ( j , l= l ,  2), (18) 

where 

Ljj(V , w) = 2 [ikaj(2n + 1)j.(kat) h.(kat)-  1] cos { (n +�89 w} cos { (n +�89 v}, 
n=0 

( j = l ,  2), (19) 

Laz(V, w) - 2ikaz ~, (2n+ 1)j.(kal)hn(ka2) cos {(n+�89 cos {(n+�89 (20) 
n=O 

L21(v, w) = (al/a2)L12(v, w), a 1 < a e . (21) 

It follows from relations (16) to (18) that the kernels K z and Gi~ , (j, l=  1, 2) satisfy all the re- 
quirements for the application of the integral equation technique [8] and we have in this case 
7j = at, (J = 1, 2), h, (0) = (27t)- ~, h 2 (0) = h 3 (0) = 1, K (w, 0) = (cos w - cos 0)- ~, and the kernels 
Lit, (j, l=  1, 2) are given by relations (19) to (21). The kernel K(w, 0)=(cos w - c o s  0) --~ is an 
elementary function and therefore the Volterra integral equations of the first kind (2.4) and 
(2.5) in [8] can be easily inverted by using the well known formulae [9, 11]. Hence by the integral 
equation technique [8], the two simultaneous Fredholm integral equations of the first kind 
(8) and (9) can be reduced to the following four Volterra integral equations of the first kind and 
two Fredholm integral equations of the second kind : 

f ~ gj(t) dt 
Sd(O ) = aj o (COS 0--COS t) �89 

1 jo Cj(t)dt 
o (cos t - c o s  o?  = fj(o),  

0--<0-< at ,  ( j =  1, 2), 

0 <  0 <  c~j, (j = 1, 2), 

(22) 

(23) 

(24) 

(25) 

f ~ f ~2 
0 0 

s2(o) + L2,(v,O)S,(v)d~ + L2~(~,O)S2(~)d~ = C2(0), 0<_ 0<_ ~ ,  

where the kernels Lj~, (j, l=  1, 2) are given by equations (19) to (21). The Volterra integral 
equations of the first kind (22) and (23) are first inverted to yield [9, 11] 

ajgj(t) = - n -1 d sin uSj(u)du 
t (cos t - c o s  u) ~ i (j = 1, 2),  (26) 

d (0 sin ufj(u) du 
Cj(O) = 2 dO J o (cos u - c o s  0) ~ '  (j = 1, 2). (27) 
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After substituting the values of C j, (j = 1, 2) in terms of the known functions fj, (j = 1, 2) from 
(27) in (24) and (25), the resulting equations can be solved simultaneously to determine the 
values of the functions Sj, (j =1, 2) in terms of the small dimensionless parameters e = a~/a2 
and 7 = ka2, by the method of successive approximations. Consequently equations (26) lead 
to the required values of the unknown density functions g j, (j = 1, 2). 

3. Far field amplitude 

The far field amplitude A (0) is defined as 

~(r, O) = A(O) e~g~ - -  + 0 (r- 2) (28) 
r 

Comparing it with the integral representation formula (6), we obtain 

4nJo  Jo g'(t)e-~ .... ~  4-nJo Oo g2(t)e-'~~176 (29) 

When we use the relation El0] 

e -i~c~ = ~ ( - i ) " (2n+  a)j.(?)P,(cos ~b), (30) 
n = 0  

formulae (13) and (26)in (29), there results 

A (0) - (2)~-aan, ~: o (-i)"(2n+l)J"(Te)P"(c~ "~Sa(w) c ~ 1 8 9  (31) 

a2 ~ (_i),(2n+ l)j,(?)p,(cosO) fi~Sz(w)cos{(n+�89 
(2) ~n ,=o 

Note that in view of the above results, Sommerfeld's radiation condition is satisfied by ~. 

4. Special case 

We present here the solution of the problem for the special case when the incident wave is a 
low-frequency plane wave travelling along the negative direction of the polar axis. It is further 
assumed that the radius of inner cap is small as compared with that of the outer cap. So the 
small dimensionless perturbation parameters in this analysis are ~=al/a 2 and 7=ka2. It is 
further assumed that ? = O(e) and therefore kal--Te = 0(72). We have in this special case 

uo(r, 0) = e -ik . . . .  o, fl(O) = e - i ? '  . . . .  0 f2(0 ) = e - i ? e o s 0  

Then it follows from relations (27) that 

C 1 (0) = (2) ~ ~ ( - i )"  (2n-~l)j,(Te) cos {(n+�89 
n = 0  

=(2/~ o s g - i y e c o s  ~ - +  0(? , 

C2(0) = (2) ~ ~, ( - i ) " (2n+  1)j.(7) cos {(n+�89 
n = O  

=(2)  } 1 - c o s ~ -  iTcos 2 3 c o s ~ - +  O(73 ) , (33) 

where we have used the expansion (30) as well as the formula [10] 

d f0 sin u P, (cos u)du (2) ~- cos {(n+�89 (34) 
~0 o (cos u - c o s  07  = 
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Similarly the kernels Ls~, (j, l=  1, 2) can be easily expanded in terms of the small parameters 
and y and we have from relations (19) to (21) 

L,~(v ,w)= i T e c o s ~ c o s ~ +  0(73 , (35) 

?< os co w sinwcos , 
Lz2(V, w) = - -  ~ ~- + 0(7 3) (36) 

7[ (1,))2 sin v cos w, v > w ' 

= _ [ (  7 : )  v w 3v 3w 
L12(t~, w) 2 1 +i]) - cos cos + e cos cos + 

+ e 2 cos ~ cos 5 -  + 0(73) , (37) 

2 1 v w  3 v 3 w  )] = (e+i~e) cos~  cos~- + e 2 c o s S - c o s  ~ -  + 0(73 . (38) 

After substituting the above expansions of the functions Cj(O), ( j=  1, 2) and the kernels Ls~ , 
(j, 1 = 1, 2) in equations (24) and (25), we obtain after solving these equations simultaneously 
by the method of successive approximations 

I/ 0 (  0 ( ,, 30 Ss(O) = (2)~ a) c o s ~ +  b) c o s ~ + b ) ' c o s  e +  c) cos ~ + cs cos ~- + 

- I - C ; ' C O S ~ ; ~ - l -  d j c o s ~  -i- d; cos O-i- ~;' cos ~22-t-O0 )3) --i- 

+ i e) cos ~ + e s cos 7 + cos 0 + j j ,  cos ye + 0 (7 3 , 

( j = l ,  2), (39) 
where 

a ' l=  

b ' l=  

c ] =  

c'1'= 

d i =  

r 

e 1 

f ; =  

f ; ,  _- 

t 

a 2 

b ; =  
! 

C 2 ----- 

1 - W 0 (0~2) , 

Wo(~a) W o ( ~ : ) { 1 -  Wo(~2)},  b; = - W1(~2), 

W1 (~)  Wx (~2) { 1 - 2 W 0 (~2) } + W2 (a~) W20 (~2) { 1 - Wo (ct2) }, 

t i t  - - _  Wo(~a)W,(c~z){1-Wo(~e)}, ca - W: (~2) 

- w l  (~:) + ~ w2 (~2) + Wo (~:) { w~ ( ~ : ) -  Wo (~2) + w ~  (~2)} + 

1 1 3~ 2 3~z s m - - ~  " = 0 ,  '" 0 
+ ~  3 - 2 ] '  

c o s ~ - + c o s  s i n ~ +  d 1 d a = , 

W o (c~z) { - 1 + W o (~:) } + W 1 (a:) ,  e'; --- O, 

W 0 (0~1) { -- 1 --~ 3 W 0 ((~2) - 4 W 2 (0~2)+ W 0 ((z2) W 1 (0~2) + 2 W 3 (0c2) } , 

1+1(sin .) 
- - ~ + - + wo(~:)  wa(~:)  ; 

7[ 

1, 

Wo(a~){- l+Wo(a2)} ,  b[ '=  O, 

WI (a~) W a (~2)- Wo (az) Wo 2 (a~) { 1 - Wo (a2) }, 

W i ( ~ l ) { - - l + W o ( ~ z ) } ,  e ~ ' = O ,  
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and 

di=�89 all'= -�89 cos  Z -  + cos  , 

' Wo( ) " C 2 ~ -- O~ 2 , e2 = -- , 

f~ = Wo(al) { - 1 -  W~ (o::) + 3 Wo(a2)-2 W2o(O~2) } , Jff = O, iIsinnO 
- + - ~ a - -  

w . ( 0 )  = 

[0+s in0] ,  n---0. 

n > l  

d ~ "  = - ~ - ,  

We may point out here that although the kernel El2 (v, w) defined by (37) does not tend to zero 
when the perturbation parameters V, ~ tend to zero, yet the method of successive approximations 
can be used to obtain an approximate solution (39) of the simultaneous Fredholm integral 
equations (24) and (25). 

When we substitute the above values of Sj, (j = 1, 2) in the formula for the far field amplitude 
(31), we obtain 

A(O) = - a  2 ~/Wo(o~2)a~ + (Wo (~2)b~ + Wo(O~l)dl)~-}-(Wo(O~l)b~l + W 1 (O~l)b ~' + 

~ f  

+ Wo(~2)cl + w1(~2)c~)~ 2 + Wo(~2)dl + ~ sin -~- + 2 sin d2 + 

+W2(~2)d'2"-~Wo(c~z)a'21+ (W1(~2)e'2+ 1(0~2 + s i n 3 a z ) e ~ ) c o s 0 -  

-~W2(o~2)a'2(3cos20-1))72+O(73)} + i{(Wo(o~2)e'2+Wl(O~2)e'j- 

- W~ (~2)a~ cos 0)7 + (W o (~1)e~ + Wo (c~2)f~ - W1 (a2)b~ cos 0)7e + O (73)} 1 , (40) 

where a), bj, bj', c), cy, cy', dj, dj', dj", e), ej, Jj, fj', (j = 1, 2), are given by (39). Finally, we 
put this value of A(O) in formula 'for the scattering cross section. 

= 2 ~  1t(0)12 sin OdO, (41) 
o 

and we obtain after some simplifications 

= -- a2+sina2)2+2(el+sine~)(e/+sinez)  1 - - ( e 2 + s i n e z )  e +  

( 3 (a2+sina2)4} "+ 4 (a2+s inaz ) •  + ( a l + s i n c t l ) 2 { l  - - 4 ( c ~ 2 + s i n a 2 )  + ~ - x  

{ 1 }{2  
x 1 - - (~2+sin ~2) (al +.sin cq)2 (e2 + sin e2) - 

7~ 

(s (s sin 2az) }) sin 2~1~ in ~2 + - -  ~2 + 
- -  i n  a~ + 2 / 2 �9 

�89 { (2 sin a2 + sin 2~2) 2 -- (a2 + sin a2) (-- 2~: + sin a2 + 3 sin 2a2 + sin 3~2) -- + 

~2 (ee+sin a2) 4 72+0(y 3) . (42) 
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When we let (i) a, -o0 or cq --+ 0; (ii) ~2 ~ 0; (iii) 0~--+ 0, c~ 2--+re or ~ ~--+rt, ~2--+0 in the above result, 
we readily obtain the limiting formulae for the scattering cross section of a soft spherical cap or a 
soft sphere which agree with the known results [ 1 ~ ] .  But when we let ~ ~rr  in (42), we derive 
the formula for the scattering cross section a' of the corresponding problem for a soft sphere 
bounded by a concentric soft spherical cap 

[ { 1  
a ' =  4a22 (c~2+sin~2)2+2rt(=2+sin~2) 1 - (%+sin~2)  ~ + 

7~ 

+ rc 2 1 4 (ea+sine2)  + (e 2+sinc~2)* + 

+ 8(< +sin ( 2+sin sin  2+sin 

3 (e2 + sin e2)4},2 + 0 (,3)1. (43) - te2 + sin c%)(- 2c~ 2 + sin c~ 2 + 3 sin 2c~ 2 + sin 3e2) - ~ 

5. R e l a t e d  e l e c t r o s t a t i c  prob lem 

The result (31) can be used to evaluate the total charge required to raise the two caps to unit 
potentials in a free space. The integral equations which embody the solution of this electrostatic 
problem are 

[~, [2=.[ sin tal(t)&pldt a 2 

~ o  ~ o  [ R ] , ,  . . . . . . .  , 

~al (2rr sin tat (t)&o x dt a~ 
vo vo [R]r, =,1 . . . .  a 

~,212= sin ta2(t)dq)ldt 
+ a 2 = 1 0 < 0 < ~ 1 ,  (44) 

J o J o  [ R ] r l =  . . . . . . .  ' - - 

2 /'~2 /.2~ sin taz(t)dqoxdt 
+ aZJo Jo [R],, . . . . . . .  2 = 1, 0_<0_<a2,  (45) 

where a j, ( j=  1, 2) are the charge densities of the two caps, when these are raised to unit 
potentials in a free space. Comparing equations (44) and (45) with equations (8) and (9) we 
find that 

1 
sin taj(t) = ~ [gj(t)]k=o, (46) 

where gj(t), ( j=  1, 2) are the solutions of integral equations (8) and (9) for the special case 
of Section 4. 

The value of the required total charge Q on the two caps is 

Q = 2n [a2 f[l sin tal (t)dt +a2 f[2 sin taz(t)dt] 

=~ [a~l f[' {<(t)}k=odt+a2 f[ 2 {g2(t)}k=o~/~ . (47) 

We obtain from relations (29) and (47) 

Q = - [A (0)]k= o. (48) 

Substituting in it the value of A (0) given by (40) we obtain [ { ,}2 
Q = a~ (c~2+sinez)+(cq+sin%) t _ _1 (%+sinc~ z e + 

+ { - 2 ( s i n c q + ~ ) (  s i n ~ a + - r c  s i n 2 e a t ( 1  . . . .  roe ( e z + s i n e 2 ) ) +  

1 ~ _ 
+ ~ ( 2+sin %) (%+s in  %)2 1 - r~l (e2+sin %) e2+O(e 3) , (49) 
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which agrees with our result [12]. When we let el ~ n  in (49), we obtain the value of Q for the 
corresponding electrostatic problem of a sphere bounded by a concentric spherical cap in a 
free space. 
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